Cambridge International Examinations<br>Cambridge International General Certificate of Secondary Education

## MATHEMATICS

0580/42
Paper 4 Paper 4 (Extended)
October/November 2016
MARK SCHEME
Maximum Mark: 130

## Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

[^0]| Page 2 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge IGCSE - October/November 2016 | 0580 | 42 |

## Abbreviations

cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
SC Special Case
nfww not from wrong working
soi seen or implied

| Question | Answer | Mark | Part marks |
| :---: | :---: | :---: | :---: |
| $\begin{array}{lll}1 & \text { (a) (i) } \\ & \\ & \\ & \\ \text { (ii) }\end{array}$ | 11054.25 final answer | 2 | M1 for $18000 \times\left(1-\frac{15}{100}\right)^{3}$ oe |
|  | 16500 | 3 | M2 for $14025 \div\left(1-\frac{15}{100}\right)$ oe or M1 for recognition of 14025 as $85 \%$ soi |
|  | 260 final answer | 2 | M1 for $P\left(1+\frac{5}{100}\right)^{2}=286.65$ oe |
| (c) (i) | 6.18 | 3 | M2 for $\frac{224.72-200}{200 \times 2} \times 100$ oe or $\frac{1}{2}\left(\frac{224.72}{200} \times 100-100\right)$ |
|  |  |  | or M1 for $\frac{200 \times r \times 2}{100}$ oe or $\frac{224.72-200}{200 \times 2}$ or $\frac{224.72}{200} \times 100-100$ soi by 12.36 <br> If zero scored, $\mathbf{S C 1}$ for 56.18 or 56.2 as final answer |
| (ii) | 6 | 3 | M2 for $\sqrt{\frac{224.72}{200}}$ or $\sqrt{\frac{224.72}{2}}$ soi by 1.06 or 106 or 10.6 |
|  |  |  | or M1 for $200\left(1+\frac{r}{100}\right)^{2}=224.72$ oe |


| Page 3 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge IGCSE - October/November 2016 | 0580 | 42 |


| Question | Answer | Mark | Part marks |
| :---: | :---: | :---: | :---: |
| 2 (a) <br> (b) <br> (c) (i) <br> (ii) <br> (d) (i) <br> (ii) | $\begin{aligned} & 1 \\ & 1 \\ & \text { Fully correct graph } \\ & \\ & -1<\text { ans }<-0.8 \\ & 1.25<\text { ans }<1.45 \\ & 2.5<\text { ans }<2.6 \\ & -0.7<\text { ans }<-0.5 \\ & y=1 \text { to } 1.1 \text { oe } \\ & y=-0.4 \text { to }-0.33 \text { oe } \\ & -0.4 \text { to }-0.33 \text { oe } \end{aligned}$ | 1 1 <br> 4 <br> 1 1 1 <br> 2 <br> 1FT <br> 1FT <br> 1FT | B3FT for 6 or 7 points plotted or B2FT for 4 or 5 points plotted or B1FT for 2 or 3 points plotted <br> M1 for evidence of $y=-x$ or $\frac{x^{3}}{3}-x^{2}+1=-x$ <br> FT only if a clear maximum point <br> FT only if a clear minimum point <br> Correct or FT their graph |
| 3 (a) <br> (b) <br> (c) | $\begin{aligned} & \frac{240 \sin 85}{\sin 50} \\ & 312 \text { or } 312.1 \ldots \\ & \frac{1}{2} \times 180 \times 240 \times \sin A=12000 \end{aligned}$ <br> 33.748 to 33.749 <br> 328 or 328.3 to 328.5 | M2 <br> B1 <br> M1 <br> A2 <br> 5 | or M1 for $\frac{\sin 50}{240}=\frac{\sin 85}{A B}$ oe A1 for $\sin =\frac{24000}{43200}$ or better or 0.555 or 0.556 or 0.5 or 0.5555 to 0.5556 <br> B1 for [angle $A=$ ] 78.75 seen <br> M2 for $\begin{aligned} & 180^{2}+(\text { their } A B)^{2}-2 \times 180 \times \text { their } A B \times \cos 78.75 \\ & \text { or M1 for } \cos 78.75=\frac{180^{2}+(\text { their } A B)^{2}-x^{2}}{2 \times 180 \times(\text { theirAB })} \end{aligned}$ <br> A1 for 107800 to 107900 |
| (d) (i) <br> (ii) | 108.75 or 108.7 or 108.8 <br> 288.75 or 288.7 or 288.8 | $\begin{gathered} 1 \\ 2 \mathrm{FT} \end{gathered}$ | FT $180+$ their $(\mathbf{d})(\mathbf{i})$ <br> M1 for $180+$ their (d)(i) or <br> $360-(180-\operatorname{their}(\mathbf{d})(\mathbf{i}))$ |


| Page 4 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge IGCSE - October/November 2016 | 0580 | 42 |



| Page 5 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge IGCSE - October/November 2016 | 0580 | 42 |


| Question | Answer | Mark | Part marks |
| :---: | :---: | :---: | :---: |
| 5 (a) (i) | $\begin{aligned} & \frac{3}{4}, \frac{1}{4} \\ & \frac{7}{8}, \frac{1}{8} \end{aligned}$ | 2 | B1 for any 2 correct |
| (ii) | $\frac{21}{32} \text { oe }$ | 2 | M1 for $\frac{7}{8} \times \frac{3}{4}$ oe |
| (iii) | $\frac{441}{1024} \text { oe }$ | 2FT | M1 for $\left(\frac{7}{8} \times \frac{3}{4}\right)^{2}$ or their $((\mathbf{a})(\mathbf{i i}))^{2}$ oe |
| (b) | 175 | 2 | $\text { M1 for } 200 \times \frac{7}{8}$ |
| (c) | 2400 | 2 | M1 for $1575 \div$ their(a)(ii) |


| Page 6 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge IGCSE - October/November 2016 | 0580 | 42 |


| Question | Answer | Mark | Part marks |
| :---: | :---: | :---: | :---: |
| 6 (a) $\begin{array}{ll}\text { (i) } \\ & \\ & \text { (ii) } \\ & \\ & \\ & \text { (iii) }\end{array}$ | 1.32 | 2 | M1 for $0.8 \times 1.5 \times 1.1$ |
|  | 0.725 or 0.7246 to $0.7247 \ldots$ | 2 | $\mathbf{M 1}$ for $\pi r^{2} \times 0.8=$ their $(\mathbf{a})(\mathbf{i})$ or $\pi r^{2}=1.5 \times 1.1$ oe |
|  | 0.513 to 0.518 nfww | 5 | $\begin{aligned} & \text { M1 for } \\ & 2(1.5 \times 1.1+1.5 \times 0.8+1.1 \times 0.8) \end{aligned}$ |
|  |  |  | M1 for [ $2 \times$ ] $\pi \times(\text { their }(\mathbf{a})(\mathbf{i i i}))^{2}$ |
|  |  |  | M2 for $\pi \times 2 \times($ their (a) (ii) $) \times 0.8$ or M1 for $\pi \times 2 \times($ their (a)(ii)) |
| (b) (i) | $x+y \geqslant 9$ oe | $1$ |  |
|  | $y \geqslant 2$ oe |  | If zero scored, $\mathbf{S C 1}$ for $x+y>9$ and $y>2$ |
| (ii) | Fully correct diagram with unwanted region shaded | 4 | B1 for $2 x+3 y=24$ ruled |
|  |  |  | B1 for $x+y=9$ ruled |
|  |  |  | B1 for $y=2$ ruled |
| (iii) |  | 1 |  |
|  | $[y=] 2$ | $1$ | If zero scored, $\mathbf{S C 1}$ for $2 x+3 y$ evaluated from integers |


| Page 7 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge IGCSE - October/November 2016 | 0580 | 42 |



| Page 8 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge IGCSE - October/November 2016 | 0580 | 42 |

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
8 (a) \\
(b) \\
(c) \\
(d)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& {[u=] 80} \\
\& {[v=] 160}
\end{aligned}
\] \\
6.24 or 6.244 to 6.245
\[
5.05 \text { or } 5.052 \ldots
\] \\
4 nfww
\end{tabular} \& 1
1
3

2

4 \& | M2 for $\sqrt{8^{2}-5^{2}}$ oe or M1 for $l^{2}+5^{2}=8^{2}$ oe or $\mathbf{B 1}$ for suitable right angled triangle drawn with 5 on correct side |
| :--- |
| M1 for $\frac{4.8}{2.5}=\frac{9.7}{M N}$ oe |
| M3 for $\left[x^{n}\right](x+1)=4 \times \frac{5}{12}\left[x^{n}\right](x-1)$ oe, $n=1,2$ or 3 |
| or M2 for $\frac{[x](x+1)}{\frac{5}{12}[x](x-1)}=\left(\frac{2[x]}{[x]}\right)^{2}$ oe or M1 for $2^{2}$ or $\left(\frac{1}{2}\right)^{2}$ soi | <br>

\hline | (i) |
| :--- |
| (ii) |
| (b) (i) |
| (ii) |
| (iii) |
| (iv) | \& | 1.5 oe |
| :--- |
| $\frac{3}{y-2}$ oe final answer |
| $-3$ |
| 65536 final answer |
| -6 |
| 3 | \& 2 \& | M1 for correct removal of fraction M1 for collection of terms in $x$ and factorises OR |
| :--- |
| M1 subtracts 2 from both sides M1 multiplies by $x$ to remove fraction and |
| M1 for correct division by expression of the form $a y+b, a$ and $b \neq 0$ |
| B1 for $\mathrm{h}(16)$ oe e.g. $\mathrm{h}\left(2^{4}\right)$ |
| M1 for $2-x=2^{3}$ oe | <br>


\hline | 10 (a) |
| :--- |
| (b) |
| (c) | \& | 7.5 |
| :--- |
| 5 |
| 16.8 or $16.80 \ldots$ | \& 2

3

3 \& | M1 for $3 x+x+3 x+x=60$ oe |
| :--- |
| B2 for $3 x+4 x+5 x[=60]$ or better or M1 for $(3 x)^{2}+(4 x)^{2}$ oe |
| M2 for $x+x+\frac{90}{360} \times \pi \times 2 \times x \quad[=60]$ oe or M1 for $\frac{90}{360} \times \pi \times 2 \times x$ oe | <br>

\hline
\end{tabular}


[^0]:    $®$ IGCSE is the registered trademark of Cambridge International Examinations.

